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The formation and evolution of a diffusive interface in a stable salt-stratified layer
cooled from above is studied in a two-dimensional geometry by direct numerical
simulation. For a typical example with realistic parameters, the evolution of the flow
is computed up to the moment where three layers can be distinguished. Focus is on
the development of the first mixed layer. The convective velocity scaling as proposed
by Hunt (1984) and previously proposed expressions for the interfacial heat flux
(Huppert 1971; Fernando 1989a) are shown to correspond well with the results of the
simulation. The evolution of the first layer can be well described by an entrainment
relation based on a local balance between kinetic and potential energy with mixing
efficiency γ. The new entrainment relation is shown to fit the numerical results well
and an interpretation of γ in terms of the overall energy balances of the flow is given.

Previously, two rival mechanisms have been proposed that determine the final
thickness of the first layer (Turner 1968; Fernando 1987). One of the distinguishing
features of both mechanisms is whether a transition in entrainment regime – as the first
layer develops – is a necessary condition for the mixed layer to stop growing. Another
is the presence of a buoyancy jump over the interface before substantial convection
in the second layer occurs. From the numerical results, we find a significant buoyancy
jump even before the thermal boundary layer ahead of the first layer becomes
unstable. Moreover, the convective activity in the second layer is too small to be
able to stop the growth of the first layer. We therefore favour the view proposed by
Fernando (1987) that a transition in entrainment regime determines the thickness of
the first layer. Following this, a new one-dimensional model of layer formation is
proposed. Important expressions within this model are verified using the results of
the numerical simulation. The model contains two constants which are determined
from the numerical results. The results of the new model fit experimental results quite
well and the parameter dependence of the thickness of the first layer is not sensitive
to the values of the two constants.

1. Introduction
Layer formation is a characteristic feature of double-diffusive convection which

may occur in stably stratified liquids in which two substances, e.g. heat and salt,
diffuse at a different rate. The presence of these convecting layers may enhance the
transport of each component significantly. Double-diffusive convection is therefore
a potentially important transport mechanism, e.g. for heat and salt in the ocean
(Schmitt 1994) and for different components in a magma chamber (Huppert &
Turner 1981). However, it has always been a sort of curiosity in oceanography. There
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is overwhelming evidence of signatures of these processes in the ocean, for example
the step structures in temperature and salinity in thermohaline staircases (Fernando
1989b). On the other hand, there is no clear indication that these effects form a
really important contribution to the mixing of heat and salt in the ocean on a larger
scale. As far as we know, there are no studies explicitly incorporating the effect of
the processes, e.g. in terms of a subgrid model, in larger scale models. In the latter
models, the mixing coefficients for heat and salt are therefore usually taken equal.
However, recent studies (Gargett & Holloway 1992) have shown that the large-scale
circulation is sensitive to the ratio of mixing coefficients.

Layer formation typically occurs when a vertical temperature gradient is imposed
on an initially vertical salinity gradient. When the fastest diffusing substance is
(de)stabilizing, layers may form through (diffusive) finger instabilities (Huppert &
Linden 1979; Turner & Stommel 1964). In this paper, we consider layer formation
in the ‘diffusive’ favourable case. A typical experiment consists of heating a liquid,
which has constant temperature but otherwise is stably stratified through a constant
salt gradient dS0/dz, from below (Turner 1968). A constant heat flux H [Wm−2]
is applied to the bottom of the liquid. First a well-mixed layer develops near the
bottom and the thickness of this layer grows with time. After a while, a second layer
develops which is separated from the first by a relatively sharp interface. Subsequently,
this process repeats and a series of well-mixed layers develops separated by sharp
(diffusive) interfaces.

Let ρ0 [kg m−3], Cp [J kg−1 K−1] and α [K−1] indicate the reference density, the
specific heat and the coefficient of thermal expansion of the liquid, respectively. The
buoyancy flux q0 [m2s−3] which is applied to the bottom of the liquid is then given by

q0 =
gαH
ρ0Cp

(1.1)

where g is the gravitational acceleration. The other quantities important in describing
the physics of the layer formation are the coefficient of salinity contraction β, the initial
constant salinity gradient dS0/dz and the thermal and solutal diffusion coefficients κ
and D . In experiments (Fernando 1987; Huppert & Linden 1979; Turner 1968), it
is found that the thickness of the first mixed layer, say h∗, increases approximately
proportional to the square root of time. After some time, the growth rate decreases
and at a time t∗c , the thickness of the first layer is nearly constant in time. Experiments
indicate that this final layer thickness, from now on indicated by h∗f , is proportional

to a power n of q0 and a power m of the buoyancy frequency N, where N2 =
−gβdS0/dz. Turner (1968) could fit the experimental data with n = 3/4, m = −2
while Fernando (1987) was able to do this with n = 1/2, m = −3/2. With respect to
ocean mixing, the scaling of the layer thickness is central to the determination of the
mixing coefficients (Kelley 1984; Fernando 1989b). Heat and salt fluxes across the
interfaces in a thermohaline staircase can be expressed in terms of the temperature
and salinity differences over the interface. These differences can be expressed in
terms of the layer thickness if the background profiles of temperature and salinity are
assumed to be locally linear.

Both Fernando (1987) and Turner (1968) provide a physical picture of the evolution
of the first layer and the formation of the second layer. Turner assumes the buoyancy
jump over the interface that separates the first layer from the ambient liquid to be
zero, i.e. the interface is always marginally stable. When the heat loss through the
interface is neglected, conservation of heat and salt over the liquid layer leads to the
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following equation for the evolution of the mixed layer depth h∗:

h∗ = C q0
1/2N−1t∗

1/2
(1.2)

where the constant C is equal to
√

2 (Turner 1968). In contrast with Turner,
Fernando (1987) allows for a small buoyancy difference between the first layer and
the ambient liquid and models the evolution of the mixed layer using an entrainment
relation. The latter model also leads to a relation (1.2) but with a constant C different
from

√
2. Hence, both models provide similar initial growth rates although the

underlying physics is essentially different. Another difference between both models
is the explanation of the final layer thickness h∗f . In Turner (1968), the final layer
thickness h∗f is assumed to be determined by an instability of a thermal boundary layer,
which is present just ahead of the interface. As soon as this instability occurs, the first
layer stops growing. The latter ideas have also been used by Huppert & Linden (1979),
who studied total staircase growth. In Fernando (1987), the thickness h∗f is assumed
to be determined by a balance between the kinetic energy flux of the eddies and
potential energy production associated with buoyancy differences in the first layer.

From a theoretical point of view, the description of the physics of the evolution of
the first layer is unsatisfactory. The physics in both models is essentially different and
the results lead to a different scaling for h∗f in terms of q0 and N. Turner has to assume
a critical Rayleigh number, which must be taken quite large to fit the experimental
data. In Fernando’s model, the entrainment relation is only associated with salinity
differences whereas temperature differences are neglected. However, in the relation
determining the final thickness of the first layer, a buoyancy jump determined by
both salinity and temperature differences has to be assumed to obtain a reasonable
balance.

In this paper, we study the formation and evolution of the first layer by direct
numerical simulation of the governing equations in a two-dimensional geometry. In re-
ality, the flow is obviously three-dimensional but it is believed that a two-dimensional
model captures the essential physics of layer formation, which is confirmed by the re-
sults. Apart from this, due to the high resolution required, a three-dimensional simula-
tion of the these flows would be extremely computationally expensive. A similar (two-
dimensional) simulation has been performed by Kazmierczak & Poulikakos (1990)
but, due to an insufficient resolution, a multi-layered structure was not found. Using
a high-resolution CFD code, a typical example of a stably stratified liquid cooled from
above is considered for realistic values of parameters. Preliminary results of these
computations were presented in Molemaker & Dijkstra (1995). The results are here
analysed extensively for dominant balances and relevant scales. Previously suggested
expressions for heat fluxes across diffusive interfaces are compared with the numerical
results and shown to give good agreement. An entrainment relation, extending those
proposed in Linden, 1975, Turner (1979) and Fernando (1987), is shown to describe
the numerical results well.

The processes of the growth of the first layer, the formation of the interface and
the appearance of the second layer are intimately linked. The numerical results
clearly show that a significant buoyancy jump over the interface ahead of the first
layer appears even before the thermal boundary layer ahead of the interface becomes
unstable. Moreover, since the convective activity in the second layer is too small to
be solely responsible for the decrease in growth rate of the first layer, we favour the
view proposed by Fernando (1987) that a transition in entrainment regime eventually
determines the thickness of the first layer. The criterion for this transition as given
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in Fernando (1987) is best interpreted as a transition Richardson number, rather
than an energy balance. A picture of the energy transfer during the evolution of the
diffusive interface is provided by monitoring the horizontally averaged and global
kinetic and potential energy balances. The transition criterion can also be interpreted
as an energy balance using slightly different scales as those in Fernando (1987).

The analysis leads to an improved one-dimensional model of the layer formation
process, which contains two parameters. Both parameters are fitted to numerical
results and a good fit is obtained at similar values to those estimated from the
experimental results. Apart from a different criterion for the final thickness, the
model differs from that in Fernando (1987) with respect to the entrainment relation
where the heat flux over the diffusive interface and the effect of the temperature
difference on the buoyancy jump is taken into account. In addition, the evolution of
the temperature in the quiescent layer below the interface is explicitly computed. The
one-dimensional model is used to study the parameter dependence of h∗f as a function
of q0 and N. A power-law dependence with n = 0.53 and m = −1.56, respectively is
found which fits available experimental results very well. This result is not sensitive
to the values of the two parameters in the model. Although both exponents are not
very different than those given in Fernando (1987), our one-dimensional model gives
a better theoretical justification for their use.

2. Formulation
Consider a two-dimensional incompressible liquid, with constant kinematic viscosity

ν in a rectangular box of aspect ratio A (ratio of length L to height H). At the top
of the liquid a constant heat flux is prescribed which cools the layer from above
(figure 1). This set-up is equivalent to that in experiments (Fernando 1987; Huppert
& Linden 1979; Turner 1968), where a liquid is heated from below. The governing
equations are non-dimensionalized using scales H , H2/κ, κ/H , T∞, S∞ for length,
time, velocity, temperature and salinity. Here, H is the height of the box and T∞,
S∞ are reference values of temperature and salinity, respectively. If the horizontal
and vertical velocities are u and w, respectively, the dimensionless equations, with the
usual Boussinesq approximation and a linear equation of state, become in a stream
function–vorticity (ψ − ω) formulation

Pr−1

(
∂ω

∂t
+ u

∂ω

∂x
+ w

∂ω

∂z

)
= ∇2ω + Ra

(
∂T

∂x
− λ∂S

∂x

)
, (2.1a)

ω = −∇2ψ, (2.1b)

∂T

∂t
+ u

∂T

∂x
+ w

∂T

∂z
= ∇2T , (2.1c)

∂S

∂t
+ u

∂S

∂x
+ w

∂S

∂z
= τ∇2S, (2.1d)

where u = ∂ψ/∂z, w = −∂ψ/∂x and ω = ∂w/∂x− ∂u/∂z. Furthermore, T and S are
temperature and salinity, Pr is the Prandtl number, τ the inverse Lewis number, Ra
the thermal Rayleigh number and λ the buoyancy ratio based on the reference values
of salinity and temperature. These parameters are defined as

Ra =
gH3αT∞

νκ
, λ =

βS∞

αT∞
, P r =

ν

κ
, τ =

D

κ
. (2.2)



The formation and evolution of a diffusive interface 203

S T

W=Wzz=0

W=Wxx=0

Tx=Sx=0

Sz=0, Tz=F0

W=Wxx=0

Tx=Sx=0

W=Wzz=0 Sz=0, Tz=0

Figure 1. Geometrical set-up of the simulation. A two-dimensional container with a stable
salt-stratified liquid is cooled from the top.

All boundaries are assumed to be stress-free. At the top wall the salt flux is zero and
the heat flux prescribed and equal toH. All the other walls satisfy no-flux conditions
for heat and salt. The dimensionless boundary conditions then become

x = 0, A : ψ = ω =
∂S

∂x
=
∂T

∂x
= 0, (2.3a)

z = 0 : ψ = ω =
∂S

∂z
=
∂T

∂z
= 0, (2.3b)

z = 1 : ψ = ω =
∂S

∂z
= 0,

∂T

∂z
= F0, (2.3c)

where F0 is the dimensionless heat flux, given by

F0 =
q0 H

gαT∞κ
. (2.3d)

A classical explicit Euler method is used as time discretization and central differ-
ences are used as space discretization on an equidistant grid for i = 0, . . . , N; j =
0, . . . ,M. This scheme is second-order accurate in (∆x,∆z) and first-order accurate in
∆t. To compute the solution at a new time level, first Euler time stepping is performed
for ω, T and S and then the Poisson equation (2.1b) is solved for the streamfunction.
This explicit formulation enables one to use a very high resolution. A drawback of
this method is that, due to numerical stability limitations, the size of the time step is
quite severely constrained. The code was verified through comparison with an implicit
code (as used in Dijkstra 1988) for several test problems.

3. Results
The parameters Pr and τ are fixed for the water–heat–salt system (Pr = 7 and

τ = 10−2) and the aspect ratio of the container is set to A = 1. In the next subsections
the results of a typical run are described and the numerical output analysed.
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3.1. A typical example

The simulation follows closely the experiments of Turner (1968), (Huppert & Lin-
den (1979) and Fernando (1987). The case considered is Ra = 109, λ = 1 and
a non-dimensional heat flux F0 = −4.8. The numerical resolution used is N =
200, M = 300. The time step (∆t = 10−7) and resolution were chosen after ex-
tensive testing with different grid sizes and time steps and the resolution used in
Kazmierczak & Poulikakos (1990) can be shown to be insufficient. The initial condi-
tions are an isothermal motionless solution with a constant salinity gradient, similar
to those realized in laboratory experiments. The choice of the parameters and ini-
tial conditions corresponds to the following dimensional values: total depth of the
container H = 10−1 m, a prescribed buoyancy flux q0 = 10−6 m2 s−3 and an initial
buoyancy frequency N = 1.12 s−1. The (constant) values for kinematic viscosity
and thermal and saline diffusivity are ν = 10−6 m2 s−1, κ = 1.44 × 10−7 m2 s−1,
D = 1.4 × 10−9 m2 s−1. The integration in time was continued until a second layer
was well established and a third layer started to develop (up to t∗ = 3× 103 s). The
simulation took about 20 CPU hours on a Cray C98. To make a comparison with
experiments easier, the results are presented using dimensional dependent quantities,
which all are written with a superscript ∗. Without this superscript, a dependent
quantity is dimensionless.

3.1.1. Growth of the first layer

Due to cooling at the top, the thermal boundary layer becomes unstable and
convection rapidly develops, forming a well mixed layer. The evolution of the horizon-
tally averaged salinity, temperature and buoyancy profiles is shown in figure 2(a–c) for
several times t∗. Here, the buoyancy B∗ is defined as B∗ = g(ρ0−ρ∗)/ρ0 = g(αT ∗−βS∗).
In figure 2(d) buoyancy profiles are plotted at many more times, showing more details
of the layer formation process.

At t∗ = 70 s (profiles (i) in figure 2), the first layer starts to develop but both
the temperature and salinity profiles in this layer are not yet homogeneous. Both
quantities are well-mixed at t∗ = 550 s (profiles (ii)) and the thickness of the mixed
layer increases through turbulent entrainment. The interface, separating the first layer
from the liquid below, develops (profiles (iii–v)) but its growth rate decreases with
time. From approximately t∗ = 2500 s (profile (vi)) the thickness of the first layer
only changes very slowly. At that time, heat and salt appear well-mixed in the region
below the interface and a second mixed layer has developed. In figure 3, the salinity
distribution is shown at t∗ = 2750 s, where light (dark) shading indicates a high (low)
salt concentration. The interface separating the two layers can be clearly identified in
figure 3 and is located near z∗ = 6.5 cm.

The parameters of this particular simulation correspond to one of the laboratory
experiments in Fernando (1987). The qualitative agreement is good since the same
layered structure as in the experiments is found and the thickness of first layer is
larger than that of the next layers. More quantitatively, in Fernando (1987) it was
found that for q0 = 10−6 m2 s−3 and N = 1.12 s−1, the depth of the first layer is
h∗f ≈ 3.5 cm (figure 6 in Fernando 1987). This compares well with the result of
the numerical simulation where a final depth h∗f ≈ 3.7 cm of the first layer is found
(figure 2d).

3.1.2. Development of a stable interface

From times larger than t∗ = 500 s, a certain amount of mixing is present below
the interface separating the first layer from the surrounding liquid. At t∗ = 500 s, the
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Figure 2. Transient development of horizontally averaged profiles. Profiles are shown at (i) t∗ = 70 s,
(ii) t∗ = 550 s, (iii) t∗ = 1040 s, (iv) t∗ = 1528 s, (v) t∗ = 2014 s and (vi) t∗ = 2500 s. (a) Salinity
S . (b) Temperature T . (c) Buoyancy B∗ = g(ρ0 − ρ∗)/ρ0. (d) Same as (c), but for many more times
between t∗ = 70 and 2920 s. The development and sharpening of the interface is clearly shown as
well as the development of a second interface between the second and third layer.

profiles of temperature, salinity and buoyancy are plotted in more detail in figure 4(a).
From figure 4(a), an upper bound for the appropriate effective Rayleigh number, based
on the thickness of the thermal boundary layer ahead of the interface, is computed
as Rae ≈ 300. This value is much smaller than 103, indicating that this boundary
layer is still stable. However, again from figure 4(a) one observes that already
a significant buoyancy jump has developed. The present calculations consistently
show a buoyancy jump that develops over the interface, even when the thermal
boundary layer ahead of the interface is stable. This seems to be in contradiction
with Huppert & Linden (1979) and Turner (1968) where it is stated that, within
experimental accuracy, salt and temperature differences across the interface induce
a buoyancy jump that is negligible during the development of the first layer. In
Fernando (1987), the small stable buoyancy jump across the interface is estimated
to be around 10% of the buoyancy difference due to salt alone. The present results
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Figure 3. Gray-scale plot of the salinity distribution S at t∗ = 2750 s. Light (dark) shading
indicates high (low) salinity.

predict a buoyancy jump that is of the order of 50% of the salinity difference over
the interface (figure 2). This buoyancy jump is difficult to determine in experiments
since in such a turbulent and intermittent process the position of the interface is not
well-defined. Therefore, the question arises whether the buoyancy jump across the
stable interface has been underestimated in previous work.

Unfortunately, salinity and temperature profiles from which a buoyancy jump can
be calculated are only given in figure 9 in Huppert & Linden (1979), where these are
used to show that, within experimental accuracy, no buoyancy jump is present when
the first layer grows. This figure has been scanned electronically and the data have
been retrieved from the resulting bitmap; it is plotted in figure 4(b). Comparison of
figure 4(b) with figure 2(a, b) shows a good (qualitative) correspondence of the profiles.
Using the scales indicated in figure 4(b) we can calculate the relative contributions
to the density and adding the two profiles we obtain the buoyancy profile shown in
figure 4(c). As can be clearly seen, a significant buoyancy jump is present across
the interface. The fact that the eye might be deceived in figure 4(b) is due to the
different length scales over which salinity and temperature differences occur. From
the buoyancy profile in figure 4(c), an estimate is obtained of the buoyancy jump
as ∆B∗ ≈ 0.5gβS∗, which is much larger than the estimate of Fernando (1987)
but corresponds very well with that found in the present numerical calculations.
Hence, although the result as given in figure 9 in Huppert & Linden (1979) is an
instantaneous profile and may not show any averaged property over the interface
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Figure 4. (a) Profiles of the horizontally averaged temperature, salinity and buoyancy at t∗ = 500 s.
(b) Reproduction of figure 9 from Huppert & Linden (1979) using a digital scan of the original
paper. The scales ∆S,∆T indicate equal (but opposite) contributions to the buoyancy. The vertical
coordinate z is non-dimensional (from Huppert & Linden 1979). (c) Vertical profile of the buoyancy,
constructed by adding the temperature and salinity profiles of (b).
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it does not rule out a non-zero buoyancy jump before the thermal boundary layer
ahead of the interface becomes unstable.

3.1.3. Formation of the second layer

For t∗ > 500 s there is some mixing underneath the first layer (figure 2), either
caused by eddies which break through the interface or by eddies which are viscously
driven by the deformation of the interface. Although the amount of ‘pre-mixing’ is
small, it does have an effect on the development of the first layer. By transporting salt
below the interface upward it enhances the buoyancy jump at the interface, slowing
down the growth of the first layer. An additional effect of the ‘pre-mixing’ is an
erosion of the salinity gradient underneath the first layer. Due to the much smaller
diffusion coefficient the salt gradient recovers only very slowly back to its diffusion
solution, whereas the (de-stabilizing) temperature gradient remains mostly intact. Due
to this ‘pre-mixing’, convection may set in sooner, although it is not essential for the
formation of the second layer. After sufficient time the destabilizing heat flux will
always trigger an instability in the second layer and drive a convective flow.

When a second mixed layer is present, the convection in this layer will be able to
work against the direction of migration of the interface and two evolution scenarios
are possible. First, the second convecting layer is overtaken and entrained by the first
through a break-up of the interface separating both layers (Fernando 1987). Although
instabilities of the thermal boundary layer ahead of the interface occur throughout,
they do not stop the first layer, because the mechanical mixing by the eddies prevents
a stable interface forming between both layers. Only when the buoyancy jump
is large enough, then the second layer remains separated from the first. Another
possibility is that the second layer remains separated from the first but both layers
migrate downward. The migration of the interface then stops at some later time.
In an extreme case, the migration of the interface stops as soon as convection in
the second layer is well developed. This has been observed by e.g. Turner (1968)
and Huppert & Linden (1979). Both scenarios may occur in reality, and it requires
additional analysis of the numerical results to understand these processes in more
detail.

3.2. Relevant scales

In this section the growth rate of the first layer, the magnitude of the vertical velocities
in this layer and the heat flux through the interface during the development of the
first layer are analysed. Moreover, the energy budgets (both potential and kinetic)
are monitored along the trajectory computed.

3.2.1. Growth rate of the first layer

To estimate the thickness of the mixed layer we have to choose a criterion to
determine the location of the interface. In figure 5a the horizontally averaged squared
vertical velocity (w∗)2 – which is a measure of the intensity of vertical mixing – is
shown at t∗ = 2170 s. From this figure, it is observed that (w∗)2 has a maximum in
the first mixed layer and a smaller local maximum in the second layer. The layers are
separated by a minimum of (w∗)2 (in figure 5(a) located at z∗ = 0.064 m) coinciding
with steep gradients in S and T . The location of this minimum is used as a measure
of the thickness h∗ of the first layer. Results for h∗ versus time t∗ are plotted in
figure 5(b). Clearly oscillations can be seen during the evolution. Similar oscillations
were found in the experiments of Turner (1968). The time scale of the oscillation in
the computations is about 700 s, whereas in Turner (1968) it is about half this value.
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dependence is fitted.
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This oscillation might be related to the original (oscillatory) diffusive instability
which causes the initial convection. Also, it might be related to waves in the interface,
which can be seen in an animation we made of the flow development. A third
possibility is that the oscillation is caused due to the appearance of potential second
mixed layers. These are entrained into the first layer, because the available energy for
entrainment is still sufficiently large. However, due to advective salt transport below
the interface, the activity in the second layer raises the buoyancy difference thereby
giving a smaller growth rate. As the second layer is entrained into the first layer –
thereby mixing the extra salt – the buoyancy difference becomes relatively smaller
giving a faster growth. The period found in Turner (1968) is smaller probably because
the experimental initial salinity gradient is larger.

In figure 5(c), the relation between h∗ and t∗ is replotted logarithmically. Both
experiments and our numerical results show that the growth rate decreases with
increasing time. It is clear that h∗ increases with t∗ at a smaller rate than (t∗)1/2.
Our best fit to the initial growth is a power-law dependence with exponent 0.36. The
exponent proposed in Fernando (1987) to fit the experimental data is slightly larger.
However, when the experimental results are considered in more detail, quite a range
of power dependencies would fit the data of figure 4 in Fernando (1987). A power 0.5
as proposed in Fernando (1987) overestimates the overall growth rate for the range
of q0 and N shown.

3.2.2. Vertical velocity scaling

A scaling for the r.m.s. vertical velocity in terms of the imposed buoyancy flux q0

at the boundary has been proposed by Hunt (1984):

(w∗)2 1/2 = c0(q0 h
∗)1/3, (3.1)

where we interpret h∗ as the thickness of the mixed layer and c0 denotes an O(1)
constant. The maximum of (w∗)2 1/2 is considered as a typical scale for this quantity
and plotted as a function of time in figure 6. In the well-developed regime, a value
of (w∗)2 1/2 ≈ 2.5× 10−3 m s−1 is found. With q0 = 10−6 m2 s−3 and h∗ ≈ 3× 10−2 m
we find (q0h

∗)1/3 ≈ 3 × 10−3 m s−1 implying that c0 is indeed O(1), giving support
for the scaling (3.1). The fluctuations in the graph of (w∗)2 1/2 increase during the
development of the mixed layer. The convective eddies increase in size during the
growth of the mixed layer and at later stages they have a size comparable to the
width of the container. Therefore the fluctuations in these eddies are not averaged
out over the width of the container as is the case in the beginning of the simulation.

3.2.3. Interfacial heat flux

In previously proposed simple models, often the diffusive heat flux through the
interface was neglected during the growth of the mixed layer (Turner 1968; Huppert
& Linden 1979; Fernando 1987). Our numerical results suggest that this might lead to
significant errors in the prediction of the evolution of the first layer. In this section, the
numerically calculated heat flux is compared with experimental results of heat fluxes
through diffusive interfaces between convecting layers. Huppert (1971) proposed the
following relation for the buoyancy (heat) flux qi over a diffusive interface bounding
two layers with a temperature and salinity difference. For the problem here (cooling
from above), this expression becomes

qi = −c1(κ/ν)
1/3(−gα∆T ∗)4/3(α∆T ∗/β∆S∗)2 (3.2)
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Figure 6. The evolution of the maximum of (w∗)2 1/2 in time.

where c1 = 0.323 and ∆T ∗ and ∆S∗ are the horizontally averaged temperature and
salinity differences over the interface. With the scaling as above, the non-dimensional
heat flux becomes

Fi = −c1Ra
1/3(−∆T )4/3R−2

ρ (3.3a)

where Rρ = α∆S/(β∆T ) is the buoyancy ratio over the interface. Similar relations
for the diffusive heat flux have been proposed by Marmarino & Caldwell (1976)
and Linden & Shirtcliffe (1978). Based on a different physical interpretation of the
experimental results,Fernando (1989a) proposed another relation for the heat flux.
For the problem here, the expression becomes

Fi = −c2[Pr
−1Ra]1/5(−∆T )6/5 (1− τ1/2Rρ)

1/5

hu
2/5

(3.3b)

where c2 = 7 × 10−2 and hu is the thickness of the layer below the interface, i.e.
the second layer. In figure 7, heat fluxes as calculated from the numerical results
and as calculated from (3.3a) and (3.3b) are shown. The temperature and salinity
differences were calculated from the jump over the interface in the horizontally
averaged quantities. The error in the values as computed by both relations (3.3)
can be quite large. A small error in ∆T may easily lead to a large deviation in the
calculated heat flux. Also, the value of hu is not always well determined.

In particular at later times, when there is a convecting layer underneath the diffusive
interface, there is a good correspondence between the numerical results and the heat
fluxes obtained with either equation (3.3). Hence, when the growth of the first layer is
small, the curves are close and the heat fluxes accurate up to 10%. This justifies the
use of the heat flux formulations (3.3) in the one-dimensional model below. Either
(3.3a) or (3.3b) could be used, but (3.3b) is not preferred because of the inaccuracy in
hu. In addition, figure 7 indicates that the heat flux through the interface cannot be
neglected, having a value of about half the heat flux at the upper surface. Since the
heat flux through the interface reduces the difference in temperature over the interface,
the buoyancy jump increases. By ignoring the heat flux during the build-up of the
layer, the buoyancy jump is underestimated which may lead to an overestimation of
the growth rate of the first layer.
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Figure 7. The buoyancy flux qi through the interface underneath the first mixed layer as a function
of time. The flux is shown as calculated by the numerical model and as predicted by Huppert (1971)
(3.3a) and Fernando (1989a) (3.3b).

3.2.4. Entrainment relation

In the simple model of Fernando (1987), an evolution equation for the layer
thickness is used, which is obtained by considering a balance between the increase in
potential energy due to mixing at the interface and the kinetic energy flux available
at the interface. However, in this balance temperature differences were neglected.
In the Appendix, an equation is derived for the rate of change of potential energy.
Upon removing all the terms in this equation (A8) which are due to diffusion we find
an expression for the rate of change in potential energy due to entrainment, i.e. in
dimensionless form

d〈Ep〉e
dt

= 1
2
∆B h

dh

dt
(3.4a)

where ∆B is the horizontally averaged buoyancy jump across the interface, which
incorporates temperature effects. An improved version of the entrainment relation
used in Fernando (1987) therefore becomes

1
2
∆B h

dh

dt
= γ̃(w2)3/2 (3.4b)

where (w2)3/2 is the flux of kinetic energy at the interface and γ̃ is a mixing efficiency.
Equation (3.4b) reduces to the entrainment relation suggested by Linden (1975) and
used in Fernando (1987), when only contributions of salt to the buoyancy jump are
considered. Relation (3.4b) can also be written as

ue

(w2)1/2
∼ Ri−1 (3.4c)

where the Richardson number is defined as Ri = ∆B∗h∗/(w∗)2 and the entrainment
velocity ue has been defined as ue = dh/dt. Relation (3.4c) has been frequently
suggested in previous work (e.g. Linden 1975; Turner 1979; Hannoun, Fernando &
List 1988).

We will return to this evolution equation later on, but only check in this section
whether such a balance is found in the numerical results and, if yes, how large γ̃
must be chosen. For w2 we will use the parameterization for the convective velocity
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as discussed in §3.2.2. With (3.1), the balance (3.4c) becomes

∆B
dh

dt
= γF0 (3.5)

with γ = 2γ̃. Relation (3.5) is similar to the flux-ratio method which is used to predict
the entrainment velocity of the free convecting atmospheric boundary layer (Stull
1976). In the atmospheric case, γ was found to have values between 0.1 and 0.3. The
value for γ that is found from our numerical results is within this range. The ratio
∆B (dh/dt)/F0 is plotted as a function of t in figure 8. Here dh/dt is computed from
the fit of h(t) plotted in figure 5(b) and ∆B determined from the plots in figure 2.
There is quite a spreading in the data in figure 8, but certainly at the later times the
ratio is fairly constant with an average value of about 0.15. The slightly anomalous
values for γ at small t are due to the fact that during the first stages of the evolution
(small thickness of the mixed layer) the first layer is not yet fully turbulent.

3.2.5. Thickness of the interface

Many processes contribute to determine the evolution of the interface thickness h∗i
over which the stabilizing buoyant forces act, making it hard to find an exact relation.
However, it is possible to obtain a lower bound for h∗i , based on a straightforward
consideration of the competition between diffusion and advection that determines h∗i
(Fernando 1989a). The length scale of the diffusive salinity boundary layer, i.e. the

length scale of the stable buoyancy jump, is (Dt∗)1/2 where t∗ is a time scale over
which the boundary can grow. For t∗, we use the turbulent time scale h∗/w∗, the
mixed layer thickness and the convective velocity scale of the first layer and obtain

h∗i /h
∗ = Pe−1/2. (3.6a)

The Péclet number Pe varies only slightly during the evolution of the mixed layer.
Using values D = 1.5× 10−9 m2 s−1, w∗ = 2.5× 10−3 m2 s−1 and h∗ = 3× 10−2 m we
obtain as a lower bound for the interface thickness

h∗i /h
∗ ≈ 0.4× 10−2. (3.6b)

The actual size of h∗i will be larger for several reasons. The interface is not sand-
wiched between two convecting layers with comparable velocity and length scales, but
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horizontally averaged buoyancy profiles.

migrates into a region with almost quiescent fluid. Furthermore, the deformation of
the interface, however minute, will also increase h∗i . Available measurements suggest
a constant fraction h∗i /h

∗ (Fernando & Long 1985; Wolanski & Brush 1975) and a
value h∗i /h

∗ = O(10−1). In figure 9, h∗i /h
∗ is shown as obtained from the horizontally

averaged buoyancy profiles in figure 2(d). The numerical predictions of the interface
thickness are of the same order of magnitude as those reported from experiments and
an estimate for the interface thickness is

h∗i = 0.1 h∗. (3.6c)

3.2.6. Energy budgets

In this section, we attempt to interpret the entrainment relation as well as the
criterion for the final layer thickness directly from the calculation of the governing
energy balances. Taking the inner product of u with the momentum balance in
primitive variables, an equation for the dimensionless kinetic energy Ek (Ek ≡ 1

2
u2) is

obtained, i.e.

Pr−1 DEk
dt

= −u · ∇p+ u ·∇2u+ wB (3.7a)

where B ≡ Ra(T − λS) is the total buoyancy and D/dt the material derivative. The
balance for the potential energy Ep ≡ −zB is obtained by multiplying (2.1c) by −z Ra,
multiplying (2.1d) by z Ra λ and adding the result. This gives

DEp
dt

= −wB − Ra
(
∇2(zT )− τλ∇2(zS)− 2

(
∂T

∂z
− τλ∂S

∂z

))
(3.7b)

Both (3.7a) and (3.7b) can be integrated over the width of the domain (x = 0 to
x = A) to get the horizontally averaged energy balances given by

Pr−1

[
∂Ek

∂t
+
∂wEk

∂z

]
= −∂wp

∂z
−D+ wB (3.8a)
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where D = u ·∇2u is the dissipation. For Ep (neglecting all terms proportional to τ)
we obtain

∂Ep

∂t
+
∂wEp

∂z
= −wB − Ra ∂

∂z

(
z
∂T

∂z
− T

)
. (3.8b)

The globally averaged balances are obtained by integrating equations (3.8) vertically
and applying the boundary conditions (2.3a–c), and we obtain

Pr−1 d〈Ek〉
dt

= −〈D〉+ 〈wB〉, (3.9a)

d〈Ep〉
dt

= −〈wB〉 − Ra(F0 − Tz=1 + Tz=0). (3.9b)

All curves below were computed through time-averaging over a number of profiles
near the times stated in the caption of each figure. As can be seen from (3.9a) there is
a balance between the release of potential energy by the flow and viscous dissipation
as long as the change in 〈Ek〉 is small. This is the case during the evolution of the
diffusive interface (figure 10a). Both terms increase due to the constant input of heat
at the top of the layer but keep the same order of magnitude. The increase of kinetic
energy over the layer is an order of magnitude smaller.

In figure 10(b), the different contributions to the horizontally averaged kinetic
energy balance (3.8a) are shown as a function of depth at t∗ = 500 s. At this
time, a second mixed layer has not yet developed. The buoyancy production in the
mixed layer is approximately a linear function of depth and approaches the surface
negative buoyancy flux at the surface (F0 = 106 m2 s−3). The dissipation is nearly
constant over the mixed layer and nearly balances the buoyancy production at every
level. The same terms are plotted in figure 10(c) at a later time t∗ = 2000 s, when
a second mixed layer is present. Within each layer, the same features are shown
as presented above for only one mixed layer. Signatures of the interface, which is
located near z∗ = 0.07 m, are seen in figure 10(c) as a change in dissipation from one
(near) constant value in the first layer to another (near) constant value in the second
layer.

When (3.8a) is integrated from a level z to the surface, the energy surplus∫ 1

z
(wB − D) dz and the energy flux (wEk + wp) at level z appear. These two

terms are plotted in figure 10(d) at t∗ = 500 s, corresponding to figure 10(b). The
small imbalance between buoyancy production and dissipation, as seen in figure 10(b),
is important. Integrated over the whole domain, it shows the trend of the volume
averaged kinetic energy (d〈Ek〉/dt), but at a particular depth this imbalance may be
compensated by the energy flux (wEk +wp). In figure 10(d), the energy flux is negative
throughout the mixed layer (except at the surface). This indicates a downward flux of
energy which at the bottom of the mixed layer is available for entrainment. The same
quantities are shown at t∗ = 2000 s in figure 10(e). The interface is located near the
point where both energy surplus and energy flux change sign. In a small region below
this interface the energy flux is positive (figure 10e) indicating a possible entrainment
from the second layer upwards. The magnitude of this positive energy flux is much
smaller than that in the first layer just above the interface.

Can the entrainment relation (3.5) be interpreted in terms of an energy balance? To
investigate this, we consider the situation in figure 10(b), where the liquid below the
interface is nearly motionless. Under the assumption that the first layer is well-mixed
and the diffusive fluxes of salt can be neglected, it is shown in the Appendix that the
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Figure 11. Check of the relation (3.10b) by plotting both sides of the equation (dimensional) as a
function of time t∗ (line is the left-hand side).

layer-integrated buoyancy production 〈wB〉m is given by

〈wB〉m = − 1
2
h

(
∆B

dh

dt
+ Fi + F0

)
(3.10a)

where Fi is the heat flux through the interface. Substituting (3.10a) into the global
kinetic energy balance (3.9a) and using the entrainment relation (3.5) (the layer below
the mixed layer assumed motionless), we finally obtain an equation for the mixing
efficiency γ,

1
2
γF0 = −〈D〉

h
− 1

2
(Fi + F0)− Pr−1 d〈Ek〉/dt

h
. (3.10b)

In figure 11, the term 1
2
γF0h – computed from the buoyancy difference and interface

movement according to (3.5) – is plotted as a function of time. The right-hand side of
(3.10b) multiplied by h computed directly from the numerical results is also plotted
in figure 11. There is significant spreading in the data in figure 11. Although both the
dissipation and the heat flux are accurately enough, their difference (which is small)
is not. However, the solid line in figure 11 showing the left-hand side of (3.10b) is not
in contradiction with the data.

The relation (3.10b) gives an interpretation of the mixing efficiency in terms of an
available energy. The average thermal energy entering the mixed layer is given by
the second term in the right-hand side of (3.10b). Most of this energy is dissipated
over the layer (the first term in the right-hand side) and a fraction is used to raise
the average kinetic energy of the layer (the third term in the right-hand side). The
remaining energy, scaled as a fraction of F0, is used to entrain liquid into the mixed
layer and can indeed be considered as a mixing efficiency γ.

3.2.7. Final thickness of the first layer

As is clear from figures 2 and 5(c), the growth of the interface decreases significantly
at a particular stage in the evolution. According to the evolution scenario as proposed
in Turner (1968) and Huppert & Linden (1979) the growth rate decreases to zero due
to the entrainment below the interface caused by convection in the second layer.
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There are two arguments why we think this cannot be the only process responsible
for a substantial decrease in growth rate. First, in figure 10(e) the magnitude of this
entrainment is measured through the positive energy flux just below the interface,
which is found to be much smaller than the negative energy flux just above the
interface, even if the second layer is well-developed. Second, following Kelley (1987)
the migration speed e of an interface separating two convecting layers, considering
only turbulent entrainment, may be estimated as

e = C1(1− η)
F0

∆B
(3.11)

where η = Fi/F0 is the ratio of the heat flux through the interface Fi and the surface
heat flux F0. From (3.11) it follows directly that the migration speed of the interface
can only become small when the heat flux through the interface nearly equals the
surface heat flux. In the present case, the interfacial heat flux is always smaller than
the surface heat flux and η is never more than approximately 0.5.

Therefore something else has to be considered to explain why the first layer stops
growing. In the view presented by Fernando (1987), a transition in entrainment
regime at the interface occurs. It is known that relations (3.4) and (3.5) are not valid
over the whole range of Ri but that the straight conversion of kinetic energy into
potential energy, which is the rationale behind these entrainment relations, cannot
be applied at high Ri. This is, for example, discussed in the work of Linden (1973)
and Dahm, Scheil & Tryggvasan (1989) where mixing is studied by impinging vortex
rings on a sharp density interface. At large Ri the ‘eddies’ tend to flatten at the
interface, as if they were colliding on a rigid surface. In Turner (1979), it is suggested
that for very high Ri all mixing curves flatten out and will become independent of
Ri.

Subsequent growth of the mixed layer depends on the nature of the transport
processes near the interface, but these are by no means clear. In figure 12, the
horizontally averaged Nusselt and Sherwood numbers, defined by

Nu =
κTz − wT

κTz
; Sh =

DSz − wS
DSz

(3.12)

are plotted at t∗ = 500 and 2000 s. These quantities measure the ratio of total vertical
flux to the diffusive flux. A value near unity signifies purely diffusive transport whereas
a large value indicates convectively dominated fluxes. From figure 12 it is clear that,
as expected, Nu and Sh are very large in the mixed layer. From figure 12(a) it is
seen that ahead of the first layer, Nu is O(1) indicating a diffusive dominated heat
transport whereas Sh is O(10). During the growth of the first layer the transport
of salt over the interface is therefore still convectively dominated. For t∗ = 2000 s
the value of Sh near the interface is significantly decreased (Sh ≈ 2), indicating a
transition in transport mechanism through the interface to a diffusively dominated
regime.

In earlier studies (Fortescue & Pearson 1967; Turner 1979; Fernando & Long 1985;
Crapper & Linden 1974) it has been suggested that the nature of the interfacial layer
depends on the value of a local Péclet number. At large Pe, the interfacial layer
consists of sporadically breaking waves which contribute to the interfacial mixing,
whereas at small Pe, the interfacial layer is purely diffusive. The results in figure 12
suggest that the value of the appropriate local Péclet number is small, but it is not
obvious how to define the actual scales since a thorough knowledge of the mixing
processes is not available.
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Figure 12. Horizontally averaged Nusselt (solid) and Sherwood (dashed) numbers, as defined in
(3.12), as a function of height. (a) t∗ = 500 s. (b) t∗ = 2000 s.

An important question is what balance determines the transition between the
turbulent entrainment regime and the diffusively controlled entrainment regime.
Fernando (1987) suggests that this transition can be found from

(w∗)2 = c3 ∆B∗ h
∗ (3.13a)

which represents a balance between kinetic energy flux due to the eddies impinging
on the interface and potential energy production associated with opposing buoyancy
forces (Long 1978). In Fernando (1987), ∆B∗ is assumed to be the characteristic
buoyancy variation of the eddies in the mixed layer. From figure 5(c) we find that
the first layer reaches its final depth at t∗ ≈ 2500 s. It is at this moment that the
balance (3.13a) should be valid. From figure 6 we find (w∗)2 ≈ 10−5 m2 s−2 and from
figure 2(c) that ∆B∗ ≈ 1.5 × 10−2 m s−2. With h∗f = 3.7 × 10−2 m we get a value

c3 ≈ 2× 10−2 giving no support for (3.13a) as a dominant balance. However, (3.13a)
is best interpreted as a transition Richardson number between the two entrainment
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regimes. Indeed, from the numerical results one finds that Ri increases during the
growth of the first layer from Ri ≈ 40 to a final value Ri = c−1

3 ≈ 102 which is
comparable to the value for Ri found in Hannoun & List (1988) for the transition to
the regime that is controlled by diffusion.

One can try to modify (3.13a) to a relation which can be interpreted as a dominant
energy balance. From the data in figure 2(d), we observe that buoyancy variations
within the mixed layer are very small. The major part of the buoyancy variations
occur over the interface separating the mixed layer from the underlying fluid. A
different balance can therefore be proposed based on the interface thickness h∗i as a
characteristic value over which the buoyancy variations occur. This gives

(w∗)2 = c4∆B∗ hi
∗ (3.13b)

where c4 is a dimensionless constant which should be O(1). Again from figure 2(c), we
obtain h∗i ≈ O(3× 10−3) m, and using the same values for (w∗)2 and ∆B∗, with (3.13b)
it follows that c4 ≈ 0.2. This balance then expresses that there needs to be some
minimum kinetic energy flux to deform an interface with thickness h∗i and buoyancy
jump ∆B∗.

4. A new one-dimensional model of layer formation
The numerical results give information on the dominant balances during the first

stages of layer formation. Using this information, we try to improve on previously
constructed one-dimensional models (Huppert & Linden 1979; Fernando 1987). In
this section, a new model is proposed which is qualitatively in agreement with the
dominant balances and can be quantitatively verified using the numerical results. The
main idea behind the new model is a simple represention of the two entrainment
regimes that are discussed in the previous section using a transition between the two
regimes that is determined by (3.13a). The underlying assumptions of the model (of
which most are verified in previous sections) are

(1) all quantities are horizontally homogeneous;
(2) temperature and salinity are constant over the first (mixed) layer and indicated

below by Tm and Sm;
(3) all diffusive fluxes of salt can be neglected during the growth of the first layer;
(4) the diffusive heat flux through the interface is given by (3.3a);
(5) the liquid below the first mixed layer is motionless up to the point when the

critical value of Ri is reached, given by (3.13b).
The starting point of the model is the evolution equation (3.5) for the mixed

layer thickness, which describes the entrainment rate of the mixed layer from stably
stratified surroundings. Integrating the equation for temperature (2.1c) (horizontally
averaged) over the depth of the mixed layer leads to the following equation for the
evolution of the mixed layer temperature Tm:

h
dTm
dt

= −∆T dh

dt
+ F0 − Fi (4.1a)

where Fi is the (horizontally averaged) diffusive heat flux through the interface, given
by (3.3a). Because we neglect all diffusive fluxes of salt, the salinity of the mixed layer
is given by

Sm = 1
2
h. (4.1b)
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Whereas the salinity profile underneath the mixed layer remains unchanged, the
temperature in the quiescent layer underneath the interface is determined by

∂T

∂t
=
∂2T

∂z2
(4.2a)

together with the boundary conditions

z = −h(t) :
∂T

∂z
= Fi, (4.2b)

z → −∞ :
∂T

∂z
= 0. (4.2c)

The set of equations (4.1)–(4.2) is solved numerically using an implicit time integration
scheme (Crank–Nicolson) and central spatial differences. This method is second-
order accurate in both time and space. To solve (4.2) numerically a coordinate
transformation z′ = z+ h(t) is used to handle the moving boundary at z = −h(t). The
magnitude of the time step and spatial grid size have been chosen to give sufficient
accuracy. As initial conditions at t = t0, a well-mixed layer with thickness (πκt∗0)

1/2

and a temperature Tm and salinity Sm which are found using the overall heat and salt
balances are taken. The rationale behind these initial conditions is the instability of
the thermal boundary layer with a thickness equal to the penetration depth (πκt∗0)

1/2.
When the local effective Rayleigh number in this boundary layer (calculated using
the temperature change over the boundary layer) is of the order 103, this boundary
layer will be unstable to (oscillatory) instabilities (Baines & Gill 1969). Several tests
showed that the model is not sensitive to the thickness of this boundary layer as long
as it is small. Equation (3.13b) is used to determine when the first mixed layer stops
growing.

The one-dimensional model contains two coefficients. These are the mixing effi-
ciency γ, and the coefficient c4 in equation (3.13b). Numerical results have already
provided estimates for these coefficients, with γ ≈ 0.1 and c4 ≈ 0.2. For γ = 0.11
and c4 = 0.23 the best agreement between the predictions of the one-dimensional
model and the numerical results is obtained. The time evolution of the salinity Sm,
the temperature Tm of the mixed layer and Ti, the temperature directly underneath
the interface, are plotted in figure 13(a). The same quantities as calculated from the
numerical simulation are shown as dots, showing a good agreement.

In figure 13(b) the layer thickness h∗ versus time t∗ is shown for two different values
of q0. The solid line corresponds with the q0 value of our numerical run and gives
as best fit a power-law dependence with exponent 0.37. Also the point at which the
relation (3.13b) is satisfied is indicated in the figure. In agreement with the results
from the numerical simulation, the model predicts a layer growth at a smaller rate
than a square-root dependence. The exponent increases with increasing q0 to 0.42 at
q0 = 0.04 cm2 s−3. A larger cooling rate leads to a colder mixed layer and therefore a
larger temperature difference. Although this both influences the interfacial heat flux
and decreases the buoyancy jump, it apparently is the latter effect which dominates
and leads to a larger growth rate.

Using the values for γ and c4 as above, the parameter dependence of the final
layer thickness h∗f on q0 and N is investigated and compared with experimental
results in Fernando (1987) (his figures 5 and 6). The results of this comparison are
shown in figure 14 where the points in the plot are from Fernando (1987) and the
solid line is the prediction from the model. From figure 14(a) we conclude that the
model results fit the experimental data quite well and a power-law dependence on N
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Figure 13. (a) Tm, Sm and the temperature directly underneath the interface Ti as calculated by the
direct numerical simulation. Lines show the result of the one-dimensional model with γ = 0.11. (b)
The growth rate of the first layer as calculated by the one-dimensional model for two values of q0.
The thickness becomes constant (only shown for q0 = 0.01 cm2 s−3) when the criterion (3.13b) is
satisfied with c4 = 0.23.

with m = −1.56 is found. This value is slightly more negative than that proposed
in Fernando (1987). The exponent is not sensitive to the values of γ and c4 as is
demonstrated in figures 14(b) and 14(c). A similar comparison for the dependence on
q0 gives a good agreement with the experimental data. In fact, a slightly larger power
n = 0.53 is found (figure 15a) than that proposed in Fernando (1987). The sensitivity
to γ is again fairly weak (figure 15b), but slightly greater to c4 (figure 15c). A smaller
γ leads to a larger temperature difference, because there is less mixing. Hence the
buoyancy jump is decreased and the final layer thickness becomes larger. A larger c4

also leads to a larger layer thickness which can be seen directly from (3.13b), when the
dependencies of the buoyancy jump (approximately linear with h∗) and r.m.s. vertical

velocity (approximately as h∗1/3) are considered.
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Figure 14. (a) Comparison of the calculations of the one-dimensional model for the dependence of h∗f
on N with the experiments in Fernando (1987). Dots are measurements taken from Fernando (1987),
solid lines are the prediction of the model for γ = 0.11 and c4 = 0.23. (b) Sensitivity of the relation
in (a) to different values of γ. (c) Sensitivity of the relation in (a) to different values of c4.

5. Discussion
Based on the results above, the following physical description of the formation and

evolution of a diffusive interface emerges. After cooling has started, the initial thermal
boundary layer becomes unstable nearly instantaneously and vigorous convection
develops. This leads to the formation of a well-mixed layer of thickness h which
is initially small (of the order of the boundary layer thickness) but grows through
turbulent entrainment.

The growth rate of the first layer is derived from the balance between the change
in potential energy due to entrainment and the kinetic energy flux available at the
interface, relation (3.4b). The latter was shown to be consistent with the numerical
results and the constant γ can be interpreted in terms of a (residual) available energy.
The heat flux over the interface was shown to agree well with proposed relations based
on experiments. It is non-negligible and increases the buoyancy jump compared to
the case where it is neglected. The temperature difference will be larger in the latter
case and consequently, a slower growth rate of the interface is found.
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Figure 15. (a) Comparison of the one-dimensional model results with the experiments
in Fernando (1987) for the dependence of h∗ on q0. Dots are measurements taken from
Fernando (1987), solid lines are the prediction of the model for γ = 0.11 and c4 = 0.23. (b)
Sensitivity of the relation in (a) to different values of γ. (c) Sensitivity of the relation in (a) to
different values of c4.

Within the growth of this mixed layer downward, the r.m.s. vertical velocity scales
as h1/3 as proposed by Hunt (1984). There is a near balance between buoyancy
production 〈wB〉 and dissipation 〈D〉, and the mean kinetic energy of the layer does
not change much (figure 10a). During the growth phase of the first layer, a downward
energy flux just above the interface is available for entrainment (figure 10c).

In the simulation, we find clear evidence that there is a buoyancy jump ∆B over the
interface separating the mixed layer from the ambient liquid below, even if the thermal
boundary layer ahead of this interface is still stable. When convection develops below
the interface, the buoyancy jump increases simultaneously. The effect of salinity on
this buoyancy difference is proportional to h. If ∆T becomes larger, the buoyancy
difference is weakened. The intensity of the eddies increases with time as h2/3, but
the buoyancy jump ∆B increases at a faster rate (approximately proportional to h).
This causes the growth of the interface to decrease according to (3.4b), qualitatively
in correspondence with experiments.

It was argued that the convective activity in the second layer cannot be solely
responsible for stopping the growth of the first layer. Following Fernando (1987),
a transition in entrainment regime is proposed as a mechanism to accomplish this.
Eventually, the buoyancy jump will become large enough, such that the most energetic
eddies will not be able to deform the interface. The growth of the mixed layer will
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Figure 16. (a) Check of the dimensionless relation (A 7a) by plotting both sides of the equation
(line is the right-hand side) as a function of time t. (b) Same as (a) but now for relation (A 7b).

where ∆T = Tm − T i. Substituting (A 6) into (A 3d) eventually gives

〈wT 〉m = −1

2
h

[
∆T

d h

d t
+ Fi + F0

]
. (A 7a)

In a similar way an expression for 〈wS〉m is derived:

〈wS〉m = −1

2
h ∆S

d h

d t
(A 7b)

where ∆S is the salinity difference between both layers. Confirmation of the relations
(A 7) was obtained from the numerical simulation. In figure 16, both 〈wT 〉 and 〈wS〉
calculated directly from the numerical values are plotted together with the right-hand
side of (A 7). Although there is significant spreading, both the order of magnitude
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and the trends correspond. The expression for d〈Ep〉/dt from (3.9b) finally becomes

d〈Ep〉
dt

= 1
2
∆B h

dh

dt
+ Ra

[
1
2
h(Fi + F0)− F0 − Tz=1 + Tz=0

]
(A 8)

Only the first term on the right-hand side is related to entrainment and for later
reference, we denote this term by d〈Ep〉e/dt. If only the effect of salt is considered,
equation (A 8) reduces directly to the expression of Linden (1975), which is

d〈Ep〉e
dt

= −λRa 1
2
h∆S

dh

dt
= λRa 1

4
h2 dh

dt
(A 9)

where ∆S = − 1
2
h is used, as is the case when the initial salt gradient is linear.
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